Monitoring and Logging in Azure Databricks with Azure Log Analytics and Grafana

Connecting Azure Databricks with Log Analytics allows monitoring and tracing each layer within Spark workloads, including the performance and resource usage on the host and JVM, as well as Spark metrics and application-level logging.

You can easily test this integration end-to-end by following the accompanying tutorial on Monitoring Azure Databricks with Azure Log Analytics and Grafana, that automatically deploys a Log Analytics workspace and Grafana container, configures Databricks and runs some sample workloads.


You can find a Guide on Monitoring Azure Databricks on the Azure Architecture Center, explaining the concepts used in this article.

To provide full data collection, we combine the Spark monitoring library with a custom configuration. The build of the monitoring library for Spark 2.4 and the installation in Databricks is automated through the scripts referenced in the tutorial and available at

Collecting and querying data

Spark metrics

Spark metrics are automatically collected into the SparkMetric_CL Log Analytics custom log. The Log Analytics workspace automatically deployed as part of the tutorial is already configured with dozens of predefined queries for the most common query patterns.

Structured Streaming metrics

Streaming job metrics are automatically collected into the SparkListenerEvent_CL Log Analytics custom log. Here also, predefined queries are available.

Spark logs

Spark logs are available in the Databricks UI and can be delivered to a storage account. However, Log Analytics is a much more convenient log store since it indexes the logs at high scale and supports a powerful query language. Spark logs are automatically collected into the SparkLoggingEvent_CL Log Analytics custom log.

Application logs

You can extend the org.apache.spark.internal.Logging class to log application messages.

Counters and Gauges

You can create your own Spark metrics, such as counters and gauges.

Using Grafana

You can easily Deploy Grafana over the Log Analytics data to generate rich interactive dashboards.


Consider instrumenting your workloads with data collection, so that you can take the right reflexes upfront, understanding and optimizing the resource usage of your jobs already during development. In production, having a metrics baseline over time will greatly help you analyze and correct any decrease in performance or job failure.

The small cost of Log Analytics can be quickly offset, since you will be able to optimize the VM size and number, and be more productive in fixing issues.

Based on work by Adam Paternostro and Carlos Farre.

Software Engineer at Microsoft, Data & AI, open source fan